Attention in Large-scale
Text-to-Image Models

Daniel Cohen-Or
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The Denoising Process
with Attention Layers
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“Attention is all you need” , Waswani et al. 2007

Attention(Q, K, V') = softmax(
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From “Attention is all you need” paper by Vaswani, et al., 2017 [1]



Diffusion Models




Diffusion Models
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"A bear kicking
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The UNet Layer
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Cross-Attention

“a furry bear a bird”

At=QXK

A.1,j,n] = "amount of information” passed from token n to patch (i)



Cross-Attention
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Cross-attention

“Bird” —

“Bear”




Cross-attention
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Cross-Attention Layers
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The UNet Layer
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Represents where the model “looks” in the

The Se|f—Attenthn image for each spatial position in Q

Attention Maps
(HXW) X (HxXW)

(QK")V

Residual Connection



The Self-Attention

Attention Maps
(HxW)x (HxW)

Queries Each query defines to a
HXW xC

H X W attention map!

A query on the leg of the bear "attends”
to keys located on the leg of the bear!




The Self-Attention
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t = 0.6, layer: 10 / 70




t = 0.6, layer: 35 / 70




Self-Segmentation

Localizing Object-level Shape Variations [Patashnik et al., ICCV 2023]



Self-Attention Maps

Input image layer=4 layer=8 layer=11

*low| L

Are these PCA on the self-attention ? On what exactly the QK maps?

Plug-and-Play [Tumanyan et al., CVPR 2023]



"a catis
wearing
sunglasses”

hw X (h X w)

Self-Segmentation

-

There is a lot of semantics in the
self attention features!!!

cluster

7z




Segments labeling

cat sunglasses
"

“a cat is wearing
sunglasses”

score; 0.65 score; 0.19



Segments labeling
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Self-Segmentation Results
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cactus

oranges

background




Self-Segmentation Results




Appearance

Structure

Cross-Image Attention



The Roles of the Queries, Keys, and Values

Self-attention maps,
- .

3 TOORRIEEE [ whlch focus‘or.\
semantically similar
regions in the image.




What If we Swapped the Queries, Keys, and Values
Between Different Images?




The Roles of the Queries, Keys, and
Values

Taking the queries from
the structure image and
the keys from the
B TS K . appearance image gives
semantic
correspondences
between objects!




The Cross-Image Attention
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The Cross-Image Attention
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The Cross-Image Attention

Structure Appearance



Appearance Transfer Results

Structure Appearance



Appearance Transfer Results

Structure Appearance



Appearance Transfer Results

Eiffel Tower Sagrada Familia

Structure Appearance


https://en.wikipedia.org/wiki/Sagrada_Fam%C3%ADlia
https://en.wikipedia.org/wiki/Sagrada_Fam%C3%ADlia

Appearance Transfer Results

Structure Appearance



Appearance Transfer Results




Structure Appearance



StyleAligned

“Toy train...” “Toy airplane...”

“Toy bicycle...”

“...colorful, macro photo.”



Text-to-Image Generation

“A cat playing with a ball of
wool..."

“A dog catching a frisbee...” “A bear eating honey...”

“A woman working in the “A temple...” “A personriding a bike...”
office...”

“... iIn minimal origami style.”



Text-to-Image Generation with StyleAligned

“A cat playing with a ball of “A dog catching a frisbee...” “A bear eating honey...” “A whale playing with a ball...”
wool...”

“A woman working in the “Atemple...” “A personriding a bike..." “A cactus...”
office...”

“... iIn minimal origami style.”



Shared attention during the diffusion process

“Toy train...” “Toy airplane...” “Toy piano...” “Toy house...” “Toy boat..." “Toy drum set...” “Toy car...” “Toy kitch
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Shared Attention Layer
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Style Aligned generation of Synthetic Images

“Firewoman...” “ Gardner...” “Scientist ...” “Police woman...”

“...made of claymation, stop motion animation.”



Style Aligned generation of Synthetic Images

“Firewoman...” “Gardner...” “Scientist ...” “ Police woman...”

“ ...sketch, character sheet.”



Style Aligned generation of Synthetic Images

“Firewoman...” “ Gardner...” “Scientist ...” “Police woman...”

“ ...in minimal flat design illustartion.”



Style Aligned generation from an Input Image

Reference image Space rocket Boy riding a bicycle Matterhorn mountain Mime artist Seattle needle




Style Aligned generation from an Input Image

Reference image Space rocket Boy riding a bicycle Matterhorn mountain Mime artist Seattle needle
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StyleAligned with other methods



ControlNet + StyleAligned

Depth condition

Reference image




ControlNet + StyleAligned

Pose condition

Reference image




ControlNet + StyleAligned




Textual Inversion+Dreambooth

“<V object> in the style of a beautiful paper-cut art.”



+ StyleAligned

Personalized
content

“<V object> in the style of a beautiful paper-cut art.”



W.O AdaiN

Personalized
content

“<V object> in the style of a beautiful paper-cut art.”



DreamBooth + StyleAligned

Personalized | g
content ]



MultiDiffusion + StyleAligned

Reference image

“A poster in a flat
design style.”




MultiDiffusion + StyleAligned

Reference image

uA poster in a ﬂat
design style.”

; P _‘H":: l

StyleAligned full



MultiDiffusion in Multi Styles

Left Reference Right Reference

——




MultiDiffusion in Multi Styles

Right reference
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Be Yourself:
Bounded Attention for Multi-Subject
Text-to-Image Generation

“ . on the stairs” “ .. onthe street” “ . a basket” “.onatree”

Omer Dahary, Or Patashnik, Kfir Aberman, Daniel Cohen-Or



Misalignment in Text-to-Image
Generation

“3D Pixar animation of a cute unicorn and a pink hedaehon
and a nerdy owl traveling v a magjical forest.”

Catastrophic neglect Subject fusion Incorrect attribute
binding



Layout-guided Text-to-Image
Generation

rabbit

Caption: A rabbit is about to eat a burger



Latent Optimization For Layout
Guidance

“A dooy and a
cot”
H H .
dog cat

Attention of
L = each subjectisin

Attend and Excite [Chefer et al., SIGGRAPH 2023] )
its box

Layout Guidance [Chen et al., WACV 2023]



Latent Optimization For Layout
Guidance

“A dooy and a

cot”
Attention of
Zt =2t — — each subjectisin
its box

Attend and Excite [Chefer et al., SIGGRAPH 2023]

Layout Guidance [Chen et al., WACV 2023]




Latent Optimization For Layout
Guidance

“A dooy and a

cot”
Attention of
Zt =2t — — each subjectisin
its box

Attend and Excite [Chefer et al., SIGGRAPH 2023]

Layout Guidance [Chen et al., WACV 2023]




Misalignment in Layout Conditioned
Text-to-Image Generation

A gluger kitten “A watercolor painting “A spotted lizard
and a gray puppy” and a marble statue” and a blue fruit”

Catastrophic neglect Subject fusion Incorrect attribute
binding



Cross-Attention Layers
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Generated
Image
features

Text
embedding

“kitten and puppy”
—> fk —>

Cross-Attention Layers

—> fv —>
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What happens when we try to generate two
semantic similar objects?

— Their gs are similar

— Their as are similar
— There is a leakage between them




Leakage In
Cross-Attention Layers

“A hamster” “A squirrel” « “A hamster and a squirrel” —

Stable Diffusion Stable Diffusion Layout Guidance Bounded Attention



Leakage In
Cross-Attention Layers

“A puppy” « “Akitten and a puppy” —

Stable Diffusion Stable Diffusion Layout Guidance Bounded Attention



Generated
image
features

Self-Attention Layers

Attention Maps
(HxXW)x (HxW)

(QK")V




The Roles of the Queries, Keys, and
Values

Taking the queries from
the structure image and
the keys from the
B TS K . appearance image gives
semantic
correspondences
between objects!




Leakage In
Self-Attention Layers

Stable Diffusion
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